Technology

What is Apache Hadoop and Where it is Used?

Introduction

We are in the era of the data age, and there has been an abrupt increase in the size and scale of web data. Big data has distinct and complex unstructured formats.

This includes information from social media, websites, email and video presentations. Therefore, organisations need technologies to extract valuable intelligence from Big Data.

To process large data sets, there is a need to have technologies that can accurately and powerfully analyse the big data formats.

Google is one company that processes data using its Google File systems and MapReduce frameworks. These scalable frameworks motivated the Hadoop initiative. The Apache Hadoop allows the distributed processing of big data across many machines.

Apache Hadoop

Apache Hadoop is a big data platform used by organisations to manage and process large data sets. It helps in performing various operations such as text analytics, analysis of structured and unstructured data, machine learning, predictive modelling, and more. Apache Hadoop is popular for its ability to provide high-performance processing capabilities for big data sets.

Hadoop is a programming language and framework that enables distributed data processing. It is written in Java and runs on the Linux system. It can process huge data sets, and it is designed to be simple, portable, and scalable.

Hadoop has several modules, like Hadoop Distributed File System (HDFS), MapReduce, etc. HDFS is the key element that connects the Hadoop framework with the operating system and provides the file system for storing the data. HDFS uses the concept of the block-level file system, and it is very scalable.

Hadoop MapReduce is a framework that allows the execution of computations and provides fault tolerance. It works as the layer between the application programmes and the distributed storage mechanism. And finally, Hadoop’s Distributed Scheduler provides the job schedule, which plays an important role in the MapReduce framework.

Benefits of Hadoop Framework

The popularity of the Hadoop application has grown significantly since it meets the needs of most organisations. The Hadoop framework provides flexible data analysis with an unmatched price-performance curve. The feature of flexibility analysis applies to unstructured data, semi-structured data and structured data.

The importance of the Hadoop framework has been recognised in places where massive server farms are used to collect data from many sources. This is because it can process parallel questions as large, background jobs on one server farm.

The Hadoop ecosystem incorporates some tools to enable it to address specific needs. This includes description formats: Hive (a SQL dialect), Zookeeper (used for federating services), Oozie, Avro, Thrift, and Protobuf.

Hadoop has many advantages since it can handle data from disparate systems regardless of the data’s native format. Sometimes data is stored in unrelated systems, but it is easy to dump it in the Hadoop cluster without applying a schema.

Hadoop is cost-effective as compared to other legacy systems. Keeping in mind that today there are large data sets, using legacy systems is expensive since they were not engineered to cater to the large data sets. Hadoop is cheap because it relies on a redundant data structure. The framework is deployed on industry-standard servers, while other legacy systems are deployed on inexpensive specialised data storage systems.

Conclusion

The Hadoop framework has proven its efficiency in most organisations, but as much as it is fast and cost-efficient, legacy systems will be required to complement its use. The features of Hadoop will make the technology attractive.

Therefore, it is upon the organisations to take advantage of the framework. With Hadoop, organisations will make important predictions by sorting out and analysing large amounts of data. There is no doubt that Hadoop is the core platform for structuring big data sets.

Show More

Related Articles

Leave a Reply

Back to top button